Use the attached python notebook as a reference–> scania_failures.ipynb
1. Train a neural network to predict the class variable
2. Display the learning curve (Accuracy vs num of epochs) for 4 values of learning rate (0.0001, 0.001, 0.01 and 0.1)
Save your time - order a paper!
Get your paper written from scratch within the tight deadline. Our service is a reliable solution to all your troubles. Place an order on any task and we will take care of it. You won’t have to worry about the quality and deadlines
Order Paper Now3. Test your model on the test set and report the accuracy
4. Display the confusion matrix
5. Further optimize the model by changing the number of nodes and layers to obtain the best true positive rate
Goal is to improve the Area Under the Curve (AUC) of the ROC. The baseline is 0.77. Try to change the number of nodes, number of layers, learning rate and number of epochs to optimize the AUC. Let us see who can get the best AUC.